Wednesday, 12 August 2015

MAIN74


Euclids algorithm revisited

Link to the question : MAIN74 

HINT :

The numbers form the fibonacci sequence if you try solving it for some test cases.
Example for n= 2 loops the answer will be 5 (3,2).
              for n= 3 loops, result is 8 (5,3).
              for n=4 loops, output will be 13 (8,5). 
And so on...
Hence it is obivious that for n >=2 output is (n + 3)th fibonacci term.
Now to solve the problem in O(logn) time you should use the optimized matrix multiplication method to generate the fibonacci term.

SOURCE CODE :

#include<stdio.h>

long long MAX=1000000007;

void multiply(long long F[2][2],long long M[2][2]);
void power(long long F[2][2],long long n);
long long fib(long long n);

long long fib(long long n)
{
    long long F[2][2]={{1,1},{1,0}};
    if(n==0)
        return 0;
    power(F,n-1);
    return F[0][0];
}

void multiply(long long F[2][2],long long M[2][2])
{

    long long x = ((F[0][0]*M[0][0])%MAX + (F[0][1]*M[1][0])%MAX)%MAX;
    long long y =  ((F[0][0]*M[0][1])%MAX + (F[0][1]*M[1][1])%MAX)%MAX;
    long long z =  ((F[1][0]*M[0][0])%MAX + (F[1][1]*M[1][0])%MAX)%MAX;
    long long w =  ((F[1][0]*M[0][1])%MAX + (F[1][1]*M[1][1])%MAX)%MAX;

    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;

}

void power(long long F[2][2], long long n)
{
    if( n == 0 || n == 1)
        return;
    long long M[2][2] = {{1,1},{1,0}};

    power(F, n/2);
    multiply(F, F);

    if( n&1)
    multiply(F, M);
}

int main()
{
    int t;
    long long int n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld", &n);
        if(n==0)printf("0\n");
        else if(n==1)printf("2\n");
        else printf("%lld\n",(fib(n+3))%MAX);
    }

    return 0;
}

3 comments:

  1. n=3 for (8,3)
    As (8,3)-> (3,2)-> (2,1)-> (1,0)

    ReplyDelete
  2. Please correct for n=4 it is (8,5) and answer is 13 . U have written (8,3) and 11. I literally got struck as how the fuck does 11 comes as an answer. So please correct it.

    ReplyDelete